
A Software Architecture for Intelligent Synthesis
Environments1

Robert E. Filman

Research Institute for Advanced Computer Science
NASA Ames Research Center MS/269-2

Moffett Field, CA 94035
650–604–1250

rfilman@mail.arc.nasa.gov

1 0-7803-6599-2/01/$10.00 © 2001 IEEE

Abstract—The NASA’s Intelligent Synthesis Environment
(ISE) program is a grand attempt to develop a system to
transform the way complex artifacts are engineered. This
paper discusses a “middleware” architecture for enabling the
development of ISE. Desirable elements of such an Intelli-
gent Synthesis Architecture (ISA) include remote invoca-
tion; plug-and-play applications; scripting of applications;
management of design artifacts, tools, and artifact and tool
attributes; common system services; system management;
and systematic enforcement of policies. A typical middle-
ware foundation for an ISA is a distributed object technol-
ogy such as CORBA (Common Object Request Broker Ar-
chitecture). I argue that such an architecture can be profita-
bly extended by enabling “plug-and-play” insertion of new
policies into the system. I describe the Object Infrastructure
Framework, an Aspect Oriented Programming (AOP) envi-
ronment for developing distributed systems that provides
policy insertion. This technology can be used to enforce
policies such as maintaining the annotations of artifacts,
particularly the provenance and access control rules of
artifacts; performing automatic datatype transformations
between representations; supplying alternative servers of the
same service; reporting on the status of jobs and of the
system; conveying privileges throughout an application;
supporting long-lived transactions; maintaining version
consistency; and providing software redundancy and mobil-
ity.

TABLE OF CONTENTS

1. INTELLIGENT SYNTHESIS ENVIRONMENT
2. INTELLIGENT SYNTHESIS ARCHITECTURE
3. ASPECT-ORIENTED PROGRAMMING
4. OBJECT INFRASTRUCTURE FRAMEWORK
5. APPLYING AOP TO ISE
6. CONCLUDING REMARKS

1. INTELLIGENT SYNTHESIS ENVIRONMENT

The NASA’s Intelligent Synthesis Environment (ISE) pro-
gram is a grand attempt to develop a system to transform the
way complex artifacts are engineered. The program “aims to
link scientists, design teams, manufacturers, suppliers and

consultants in the creation and operation of an aerospace
system” and seeks “An end-to-end simulation of the product
life cycle” [1]. That is, using ISE, geographically distributed
engineers and scientists creating the design for, say, a
spacecraft, should be able to easily collaborate. Such col-
laboration would include not only sharing information, but
using advanced analysis systems and virtual reality envi-
ronments to explore the properties of different designs. ISE
should track the changes and versions of design artifacts and
protect the intellectual property of the participants. The ISE
vision thus shares intent of applying analysis tools to de-
signs with other initiatives (e.g., DARPA’s Simulation-
Based Design [2] and the National Industrial Information
Infrastructure Protocols Consortium’s STEP standard [3]).

Structurally, the ISE program divides into groups concerned
with Collaboration (tools for sharing information), Human-
Centered Computing (immersive environments), Life Cycle
Integration and Validation (version management) and Infra-
structure for Distributed Computing (software architecture).
ISE is a distributed application about manipulating and ana-
lyzing design artifacts. It is natural to think of the system as
dividing into three elements

��The underlying communication structure (network,
network transportation protocols), which reliably and
quickly moves bits from one distributed location to an-
other.

��The application code, which gathers the users’ intent
(e.g., taking commands, be they typed text or hand-
squeezes in virtual space), performs actions asserted by
that intent (e.g., executing analysis systems or comput-
ing the representation of a deformation under pressure),
and displays the results back to the user (e.g., updating
the display of a cathode ray-tube or providing pressure
resistance in a pneumatic glove).

��The middleware layer, which simplifies the task of
coding applications by providing uniform interfaces,
and useful services, and by systematically preserving
the policies of the overall application.

2. INTELLIGENT SYNTHESIS ARCHITECTURE

This paper is concerned with that middleware layer: what
abstractions can we provide to ISE application builders to
simplify their work. We call such an organization an Intelli-
gent Synthesis Architecture (or ISA, for short). Desirable
elements of an ISA include:

��Remote invocation. Applications should be able to
transparently invoke other applications and services.
Remote invocation should be as simple as possible—
the more we can relieve the application programmer
from the task of thinking of remote elements as being
different than local elements, the better.

��Plug-and-play tools. We can’t anticipate all the appli-
cations in the ISE. Comprehensive analysis will not re-
solve this problem: Some applications will be devel-
oped only after system deployment. We need to be able
to dynamically add new applications to the system.
More generally, we need “plug-and-play” tools, where
a tool is any invocable element in the system. Examples
of tools include applications, such as analysis programs
on designs (e.g., a computational fluid dynamics pro-
gram), services provided by the architecture invocable
by applications (e.g., a messaging service), and scripts,
composite tools glued together by descriptions of proc-
esses of tool invocations.

��Scripting. Invoking a single tool will not be enough to
accomplish most high-level tasks. The ISA needs to
provide facilities for expressing compositions of tool
activities—effectively, scripting languages for chaining
together tool invocations.

��Management of design artifacts. The goal of an ISE is
to produce designs, and the ISA must provide a reposi-
tory of design elements.

��Management of design artifact attributes. As impor-
tant as it is to have actual designs is to know what it is
we have. Therefore, a critical element of an ISA is a re-
pository of annotations about design artifacts. In con-
trast to “fully designed systems” we don’t believe we
will know ahead of time all the varieties of annotations
which applications will want to apply to design arti-
facts. Thus, we need a flexible repository of annotating
design artifacts (and, for that matter, the other elements
of the system, such as tools and users).

��Management of tools and tool attributes. With the
repositories of tools, designs and annotations of tools
and designs comes the concomitant need to manage the
space of tools, designs and attributes and the need for
systems to facilitate that management. Of particular im-
portance in an ISA are keeping track of the versions of
system elements, the configurations of composite sys-
tem elements, and the pedigree of design elements

��Services. Services are common (or not so common) fa-
cilities provided by an ISA under the assumption that
application programs will find them useful. Examples
of such services include name services, matchmaking,
and trading (white and yellow page mechanisms for
finding references to objects with particular names or
properties), event and publish-and-subscribe mecha-
nisms for asynchronous invocation, tool version and
configuration management and location, transactions;
and agent infrastructure (facilities for moving executing
systems closer to their data and to simplify the commu-
nication and coordination among executing compo-
nents.)

��System management. A complex system also needs
facilities for tracking system usage and for discovering,
analyzing and recovering from faults.

��Systematic enforcement of policies. Federated and
heterogeneous systems require interesting political ar-
rangements. The owners of an ISE will want certain
policies obeyed throughout the system—requirements
about elements such as access control, authentication,
priorities, intrusion detection, and reliability. The ISA
should enforce these policies with minimal effort on the
part of the application programmers.

Fortunately, many of these elements already exist. Distrib-
uted object technologies such as CORBA (Common Object
Request Broker Architecture) and EJB (Enterprise Java
Beans) provide transparent remote invocation, plug-and-
play tools and some services and system management. Such
systems also provide some system management facilities
and a few specific policies that application programs can
apply.

Similarly, scripting languages abound. There are clearly
opportunities for describing scripting systems particularly
amenable to ISE. In particular, ISE has the need for script-
ing systems that incorporate and enforce processes (that is,
combining the ability to perform action sequentially with
the need for workflow to coordinate the activities of distrib-
uted collaborators) and the ability to script systems for
variational design (that is, to search for designs that are op-
timal with respect to specific criteria.) This issue is clearly
fodder for a paper, but not this one.

Systems such as Product Data Management (PDM) systems
currently store complex design information, particularly
CAD/CAM/CAE design information. ISE’s repository de-
mands resemble PDMs in needing to store complex data,
but lack the clear PDM knowledge of what kinds of things
are being stored and what needs to be known about them.
We believe that we need to store not only design artifacts
and tools, but also meta-information about data and pro-
grams. For example, for a given data set, applications may
need to know who created it, by executing which process, at
what time, using which versions of which applications, how
long it took to create, what design assumptions went into
choosing to run the program, and so forth. Such information

can be used, for example, to track the consequences of
faulty data or programs or to recognize when different de-
signers have conflicting concepts of what makes one system
preferable to another. We note three things about this meta
data: (1) the ISA layer is not going to know exactly which
annotations will prove useful to which artifacts, (2) that it
can’t be cumbersome to introduce new annotations, and
(3) the creator of a particular tool or script may not be the
one who needs the creation of a particular annotation.

Enforcing consistent annotations of data and tools are thus
the first illustration of a systematic policy that needs to be
applied throughout the ISE. In the remainder of this paper,
we discuss a computational mechanism for implementing
such policy consistency.

3. ASPECT-ORIENTED PROGRAMMING

Developing a computer system involves keeping cognizant
of and programming elements to deal with a variety of con-
cerns. Beyond the base functionality of the system, most
applications must deal with “ilities” such as security, reli-
ability, manageability, quality of service, concurrency, and
so forth. These clutter what might have been a straightfor-
ward program with calls to orthogonal services. Such ele-
ments are in the code because they perform necessary activi-
ties, but they work against the creation of correct and main-
tainable systems. The application programmer, wise in the
world of thermal simulation or computational fluid dynam-
ics is unlikely to be able to correctly program distributed
synchronization. Even having been provided synchroniza-
tion methods and taught when to call them, she is still likely
to mistakenly omit them or use them incorrectly. And down
the road, a programmer called upon to maintain that system
would likely be mystified by these little intrusions. He
would have no idea when to preserve, delete or insert them
in modifying the system.

Ideally, one would like to separate out the specification and
coding of each of these separate concerns and have some
automatic mechanism “weave” the separate concerns back
together into a working system. This is the premise
underlying the work in the emerging disciple of Aspect-
Oriented Programming (AOP).

There are currently two primary ways of doing AOP: clear-
box methods (like AspectJ [3] and Subject-Oriented Pro-
gramming [4]) that require the source code of the to-be-
AOP’ed primary system, mix aspects code into original base
code, and output new code; and black-box methods (like
Composition Filters [1] and OIF [7]) that wrap the to-be-
AOP’ed components (functions, objects) in aspect wrappers.
A more detailed discussion of the dimensions of aspect-
oriented systems can be found in [8].

 The great virtue of separation of concerns is that one can
get people of differing expertise to work on different aspects
of a system (who can even be not only physically but also
temporally distant) and still meld their work together into a
working system. Better AOP systems minimize the degree
to which the programmers (particularly the programmers of
the primary functionality) have to change their behavior to
realize the benefits of AOP. It’s a really nice bumper sticker
to be able to say, “Just program like you always do, and
we’ll be able to add the aspects later. (And change your
mind downstream about your policies, and we’ll painlessly
transform your code for that, too.)

4. OBJECT INFRASTRUCTURE FRAMEWORK

At NASA Ames, we are working on a black-box Aspect-
Oriented Programming system, the Object Infrastructure
Framework (OIF). OIF realizes the following key ideas:

��Intercepting communications. OIF intercepts and ma-
nipulates communications among functional compo-
nents, invoking appropriate “services” on these calls.
Semantically, this is equivalent to wrapping or filtering
[1] on both the client and server side of a distributed
system. The next five points can be understood as de-
scribing the architecture of a flexible wrapping system.

��Discrete injectors. Our communication interceptors are
first class objects: discrete components that have (ob-
ject) identity and are invoked in a specific sequence.
We call them injectors. In a distributed system, an ility
may require injecting behavior on both the client and
the server. (Figure 1 illustrates injectors on communica-
tion paths between components.) Injectors are uniform
so we can build utilities to manipulate them.

��Injection by object/method. Each instance and each
method on that object can have a distinct sequence of
injectors.

��Dynamic injection. The injectors on an object/method
are maintained dynamically and can, with the appropri-
ate privileges, be added and removed. Examples of the
application of dynamic configuration include placing
debugging and monitoring probes on running applica-
tions and creating software that detects its own obsoles-
cence and updates itself.

��Annotations. Injectors can communicate among them-
selves by adding annotations to the underlying requests
of the procedure call mechanism.

��Thread contexts. Our goal is to keep the injection
mechanism invisible to the functional components (or
at least to those functional components that want to re-
main ignorant of it.) To allow clients and servers to
communicate with the injector mechanism, the system
maintains a “thread context” of annotations for threads,
and copies between this context and the annotation con-
text of requests. Thread contexts and annotations to-
gether provide the data space for communication be-
tween the application and injectors and among injec-
tors. (Injectors generated by the same factory or indus-
trial complex can also share a data space defined by
their factory structure.)

��High-level specification compiler. To bridge the
conceptual distance between abstract ilities and discrete
sequences of injectors, we created a compiler from
high-level specification of desired properties and ways
to achieve these properties to default injector
initializations.

OIF was developed to simplify distributed computing. We
developed our prototype system for CORBA [10]
components written in Java. CORBA is a distributed object
technology (DOT) that presents remote objects as proxy
objects in the local computing environment. Client-side
proxies are responsible for encoding and forwarding a local
call to the remote service; server-side proxies for decoding

and returning the result.
CORBA requires the
description of an object’s
interface in its inter-
lingual Interface Des-
cription Language (IDL).
The CORBA IDL com-
piler then “compiles” that
IDL into the code for the
proxies in the desired
execution language or
languages. We imple-
mented OIF by creating
an alternative IDL com-
piler whose proxies both
included calls to the
proxy-specific sequence
of injectors and main-
tained the request object /
annotation / thread-con-
text relationships.

A premise of the OIF
work was that compo-
nents are black boxes
whose internal structure
cannot be examined or
manipulated. This con-
trasts with clear-box
(source-language – level)
approaches to AOP.
Clear-box systems ex-

press aspects as code fragments to be woven together into a
working program. This makes OIF injectors more likely to
be reusable (as they are based on well-defined interfaces)
but less powerful than clear-box mechanisms, which can
(theoretically) be constructed as to perform arbitrary lower-
level transformations on programs. In an environment like
ISE, where the source for many applications is not available,
black-box mechanisms are the clear choice.

Examples of injectors we have developed or are developing
include are listed in Table 1. Several of these injectors are
discussed in greater detail in [9].

5. APPLYING AOP TO ISE

In this section, I present the outline of an Intelligent Synthe-
sis Architecture for ISE. Critical to the ISE problem is in-
corporating and integrating legacy analysis tools. Such tools
often exist in their own particular environments, take their
own idiosyncratic inputs, and do who knows what else be-
yond their main functionality. The central themes of this
architecture are (1) Legacy systems must be wrapped to fit
into the ISA. The simpler we can make the manual part of
this wrapping, the better. (2) The ISA serves as a repository
of synthesis artifacts (including information about both the
synthesis artifacts themselves and the process that synthe-
sized the artifacts). (3) The ISA is an enabler of distributed

Authen.Authen.

RetryRetry

Mgmt.Mgmt.

ReliabilityReliability

CORBA
Stub

Check auth.Check auth.

QoSQoS

Mgmt.Mgmt.

ReliabilityReliability

CORBA
Skeleton

ClientClient ServerServer

Client-
Side

Proxy

Server
-Side
Proxy

Network

Figure 1 – Injectors on the Communication Path Between Components

computing and (4) the ISA provides a collection of synthe-
sis and analysis services. The key ideas of this proposed
ISA are

��Reifying users, tools, and design artifacts. Reifying is
the idea of treating abstractions as things to which
properties can be ascribed. Design artifacts are the in-
puts and outputs of tools. We call such things entities.

��Recording annotations about entities. For example,
file XYZ is the output of running tool ABC on inputs G
and H. This was done on May 15th by STU. It has the
following permissions, precision, version, and so forth.
We cannot anticipate all the annotations that users
might want, so the set of annotations must be dynamic.
We may also profitably apply the knowledge represen-
tation mechanisms of expert system building tools (e.g.,
default values, inheritance, access-oriented program-
ming, and sentences in formal logics).

��Invoking tools remotely and in scripts. Since we
know about the available tools and the annotations they
impose on their outputs, and since tools are expressed
as distributed objects, we can run tools (remotely) and
can script together collections of tools.

��Employing generic systems services within scripts
and applications. Tool scripts and application pro-

grams can take advantage of a number of system-
provided services. The repository can be seen as be one
such service.

I argue for a four layer architecture for the ISA (Figure 2).
The lowest layer, the transport layer, enables secure remote
invocation. Above it, a repository provides a database of
synthesis artifacts and their attributes. The Common Ser-
vices layer provides services on which every user of ISA
can rely, and the Extended services layer uses the mecha-
nisms of the repository and transport layer to provide op-
tional additional facilities.

The obvious (from our point of view) choice for the trans-
port layer is CORBA extended with OIF. By wrapping ex-
isting tools in CORBA wrappers, tools can be accessed by a
distribution-transparent, software-bus mechanism. CORBA
is the most mature of such architectures. In contrast with
DCOM (Distributed Component Object Model), it runs on a
large variety of operating systems and with programs com-
piled in many languages. In contrast with Java RMI (Re-
mote Method Invocation), it is particularly tuned to legacy
applications. And in contrast to the next generation of HTTP
(HyperText Transfer Protocol), well, for one thing, it’s al-
ready here.

OIF injectors on CORBA-wrapped tools and services can be
used to

Table 1. Injectors

Ility Injector Action
Security Authentication Determines the identity of a user.
 Access control Decides if a user has the privileges for a specific operation.
 Encryption Encodes messages between correspondents.
 Intrusion detec-

tion
Recognizes attacks on the system.

Reliability Replication Replicates a database.
 Error retry Catches network timeouts and repeats call.
 Rebind Notices broken connections and opens connections to alternative

servers.
 Voting Transmits the same request to multiple servers (in sequence or par-

allel) combining the results by temporal or majority criteria.
 Transactions Coordinates the behavior of multiple servers to all commit or fail

together. Requires additional interface on application objects.
Quality of

service
Queue-manager Provides priority-based service.

 Side-door Provides socket-based communication transparently to application.
 Futures Provides futures transparently to the application.
 Caching Caches results of invariant services.
Manageability Logging Reports dynamically on system behavior.
 Accounting Reports to accounting system on incurred costs.
 Status Accrues status information and reports when requested.
 Configuration

management
Dynamically test for incompatible versions and automatically up-

dates software.

��Maintain the annotations of artifacts created by running
tools. For example, injectors can note the owner of a
process and include in the repository the information
about that owner, or store pointers to the inputs of a tool
on the annotations of its outputs.

��Enforce complex, not-yet-anticipated access control
rules on data, particularly as contractors form federa-
tions to deal with design subproblems.

��Implement automatic data set transformations to
translate between representations.

��Supply alternative providers of the same service.

��Report on the status of jobs to distributed managers and
debuggers.

��Support “session” environments reflecting user privi-
leges downstream and carrying the user environment.

��Enable “long-lived” transactions needed by the design
process.

��Obtain and assure the appropriate versions of datasets.

��Provide software redundancy and mobility, enabling
moving computations and data for increased efficiency.

Each of these concepts can be realized by inserting the ap-
propriate injectors on some or all of the methods of a tool or
service. It is also the case that for each of these, we don’t
really know at this point what exactly we want done—what
we mean by versions, access control restrictions, system
management, transactions, and so forth. However, this is a
strength of the injector approach, in that we can experiment
and resolve these issues by the results of these experiments,
rather than demanding omniscience at design time.

The Common Services layer would support
services such as name serving, matchmaking,
trading, events, system management, agent
infrastructure, and tool wrapping. The Ex-
tended Services layer would support services
such as repository mining, automatic design
search, workflow automation (notifications
and actions on events), visual assembly, and
knowledge capture. I mention these more for
completeness than for their relevance to
AOP, though some might encode well as
injectors.

Figure 3 lists the Java code for a simple trac-
ing injector. This injector prints out the func-
tion being called and its arguments on entry
and the result value on exit. It works on both
clients and servers. The following points
about this injector refer to the comment note
numbers in the code

[1] Creating an injector involves creating two classes, the
injector itself and a factory for creating instances of that
injector. In using the system, the programmer refers to
the injector factory; the run-time system calls on that
factory to create injector instances when building
CORBA proxies. Here we adopt the idiom of making
the injector itself be an inner class of the factory.

[2] All injector factories have a single method, createIn-
jector, which, given a proxy object, the name of the
method on which the injector is to be applied, and a
name-value list of properties, returns the injector object
to be put on that proxy/method. Different patterns of in-
jector sharing (for example, singletons, where all prox-
ies share the same injector object; per method, where all
the proxies of a given method share the same injector;
and per instance, where each proxy gets its own injec-
tor) can be achieved through different implementations
of the injector factory. The injector factory also serves
as a locus for sharing information among injectors, such
as a cache of network service quality data.

[3] In our example, the factory simply creates a new
Tracer for each proxy/method. (This is simple but
wasteful, as the Tracer has no object state. A more ef-
ficient implementation would be a singleton.)

[4] The injector itself (the class Tracer) has two methods,
a constructor and exec.

[5] The constructor is called on creating the proxy (and
given the proxy, the method being applied and a prop-
erty list.)

[6] Method exec is called operationally, whenever a re-
quest passes through the injector. It is given the request
object and can throw an InjectorException.

Transport

Repository

Naming
&

Trading
Events Agents …

D
B

 M
ining

A
utom

atic
Search

W
orkflow

Scripting

V
isual

assem
bly

K
now

ledge
capture …

Tool
Services

 Extended C
om

m
on

Figure 2. Intelligent Synthesis Architecture

[7] The request object stores several things, such as the un-
derlying proxy object (req.getProxy()), the opera-
tion (method name) being called (req.get-
Operation()), the operation arguments (which are
printed by req.listArgs()), and the return value
(req.getResult()). The injector has read/write
access to all of these.

[8] Injectors implement a continuation structure: Each in-
jector is responsible for invoking the remaining injec-
tors by calling doNext() on the request object. This
organization enables architectures where the rest of the
computation can be invoked in several different places
in the code (which might be the case if we wanted to do
different things on the client and the server), repeatedly
invoked (as is done in a retrying error recovery) or not
invoked at (as would be done by a cache injector on
finding the requested value already in its cache.)

OIF maintains a Proxy Initialization Table (PIT) that maps,
for each proxy class, each method in that class, and the cli-
ent/server distinction, a sequence of injector factories. When
a proxy is created, those factories are invoked to create a
(correspondingly ordered) sequence of injectors for each
method on the proxy. (Operations exist to dynamically mod-

ify both the PIT and the injectors on a proxy. The system
developer can choose whether to expose those operations,
and, if exposed, the security mechanisms to use to protect
them.)

The system developer can specify the (initial) configuration
of injectors on proxy methods through the specification lan-
guage Pragma. Figure 4 shows the Pragma specification for
a simple two-injector system. We note the following points
about that specification:

[1] Pragma statements are collected into “policies.”
Though its not illustrated in the example, policies can
include other policies.

[2] Import statements become import statements in the Java
output. Like Java, import statements are used to abbre-
viate complex names.

[3] The user declares abstract “ilities” (concerns). This
program has two concerns, Context and QualityOf-
Service. Context implements the notion of copying
the application thread context through the request anno-
tations and on to the service thread context. Quality-
OfService speaks to providing better service to more

package tracing;
import oif.framework.*;

public class TracingInjectorFactory implements InjectorFactoryType{ /* [1] */

public InjectorType createInjector(ProxyType proxy, /* [2] */
String methodName,
OIFProperties props) {

return new Tracer(proxy, methodName, props); /* [3] */
}

class Tracer extends InjectorBase{

public Tracer (ProxyType proxy, /* [4] */
String methodName,
OIFProperties props) {

super(proxy, methodName, props); /* [5] */
}

public void exec(OIFRequestType req) throws InjectorException{ /* [6] */
System.out.println(req.getProxy().getClass().getName() + /* [7] */

" Op: " + req.getOperation() + "\n");
req.listArgs();
doNext(req); /* [8] */
System.out.println(req.getProxy().getClass().getName() +

" Op: " + req.getOperation() + "\n");
System.out.println("Result: " + req.getResult());

}
}

}
Figure 3: The Tracing Injector

important requests. There will be at most one way of
achieving each ility on any proxy/method.

[4] Here we declare the annotation priority, and specify
that it is an int with a default value of 1. We will use
the priority of a request to determine its service level.

[5] One way of achieving the Context ility is through
copyContext. copyContext works by having the
ContextInjector as the first injector on the client
side, and the last injector on the server side.

[6] One way of achieving QualityOfService is with
queuing. queuing works by having the QueueMan-
agerInjector on the server side.

[7] We achieve the Context ility by using copyContext.
Since this statement is not modified by particular inter-
faces or methods, its done on all interfaces and meth-
ods.

[8] We achieve QualityOfService on the open method
of proxies supporting the AccountManager interface
by doing queuing.

[9] Similarly, we achieve QualityOfService on the
balance method of Account objects through queu-
ing.

Executing the Pragma compiler on this specification and the
application IDL produces a Java program to initialize the
PIT.

6. CONCLUDING REMARKS

The Object Infrastructure Framework provides a mechanism
for performing Aspect-Oriented Programming at the com-
ponent level. We have discussed how the OIF mechanism
could be applied to the development of an architecture for
an Intelligent Synthesis Environment .

ACKNOWLEDGMENTS

My thanks to Diana Lee and Tarang Patel for comments on
the drafts of this paper.

policy bank is /* [1] */

import Bank; /* [2] */
import QManager;
import ContextPkg;

ility Context, /* [3] */
QualityOfService;

var priority : int = {1}; /* [4] */

define copyContext for Context as /* [5] */
client ContextInjectorFactory do first,
server ContextInjectorFactory do last;

define queueing for QualityOfService as /* [6] */
server QManager.QueueManagerInjectorFactory;

for Context do copyContext; /* [7] */

for QualityOfService /* [8] */
on open
in AccountManager

do queueing;

for QualityOfService /* [9] */
on balance
in Account

do queueing;

end;
Figure 4: Pragma for quality-of-service queues

REFERENCES

[1] Daniel S. Goldin, Samuel L. Venneri, and Ahmed K.
Noor, “Beyond Incremental Change,” IEEE Computer 31,
31–39, October 1998.

[2] Padmanabh Dabke, “Enterprise Integration via CORBA-
Based Information Agents,” IEEE Internet Computing 3,
49–57, September 1999.

[3] Martin Hardwick, David L. Spooner, Tom Rando, and
K. C. Morris, “Data Protocols for the Industrial Virtual En-
terprise,” IEEE Internet Computing 1, 20–29, January 1997.

[4] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc Loingtier,
and John Irwin, “Aspect-Oriented Programming,” In Pro-
ceedings of the European Conference on Object-Oriented
Programming (ECOOP), Finland. Berlin: Springer-Verlag
LNCS 1241. June 1997.

[5] William Harrison, and Harold Ossher, “Subject-Oriented
Programming (A Critique of Pure Objects),” Proc.
OOPSLA ’93. ACM SIGPLAN Notices 28, 411–428, Octo-
ber 1993.

[6] Mehmet Aksit, and Bedir Tekinerdogan, “Solving the
Modeling Problems of Object-Oriented Languages by Com-
posing Multiple Aspects Using Composition Filters,” AOP
'98 workshop position paper, 1998. http://wwwtrese.
cs.utwente.nl/Docs/Tresepapers/FilterAspects.html

[7] Robert E. Filman, Stuart Barrett,. Diana D. Lee., and
Ted Linden, “Inserting Ilities by Controlling Communica-
tions,” Comm. ACM, in press. http://ic-www.arc.nasa.gov/
ic/darwin/oif/leo/filman/text/oif/oif-cacm-final.pdf

[8] Robert E. Filman, and Daniel P. Friedman, “Aspect-
Oriented Programming is Quantification and Oblivious-
ness,” Workshop on Advanced Separation of Concerns,
OOPSLA 2000, Oct. 2000, Minneapolis. http://ic-www.
arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/aop-is.pdf

[9] Robert E. Filman, David J. Korsmeyer, and Diana D.
Lee, “A CORBA Extension for Intelligent Software Envi-
ronments,” Advances in Engineering Software 3, 727–732,
2000. http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/ fil-
man/text/oif/williamsburg-print-final.pdf

[10] Jon Siegel, CORBA: Fundamentals and Programming.
New York: Wiley, 1996.

Robert E. Filman is a Senior Scien-
tist at the Research Institute for Ad-
vanced Computer Science at NASA
Ames Research Center, working on
creating frameworks for developing
distributed applications. Prior to
coming to NASA, Dr. Filman worked
in the research groups of Lockheed
Martin Missiles and Space, Intelli-
corp and Hewlett-Packard Laborato-
ries, and on the faculty of the Com-
puter Science Department at Indiana University, Blooming-
ton. He is Associate Editor-in-Chief of IEEE Internet Com-
puting and is on the editorial board of the International
Journal of Artificial Intelligence Tools. He is the author
(with Daniel P. Friedman) of Coordinated Computing:
Tools and Techniques for Distributed Software (McGraw-
Hill). Dr. Filman received his B. S. (Mathematics), and M.S.
and Ph. D. (Computer Science) from Stanford University.

